
2 Filters and Completeness

Definition 2.1 Let S be a set. A filter on S is a family F of subsets of S which
is inclusion-stable, stable under finite intersections and nontrivial, i.e.

• If f ∈ F and f ⊂ g, then g ∈ F ,

• If f, g ∈ F , then f ∩ g ∈ F ,

• ∅ 6= F .

If F1, F2 ⊂ P (M) are two filters with F1 ⊂ F2, we say that F2 is finer than F1.

The principal example of a filter is given by the family Np of neighborhoods of
a fixed point of a topological space. A further, not so important, example is the
filter FA of all subsets of S containing the fixed subset A 6= ∅. The last example is
important to understand filters as generalizations of sequences: For every sequence
s in a set S, we define the filter Fs as the family of all subsets of S containing the
image of all but finitely many terms of s.

Definition 2.2 (Convergence of filters) Let F be a filter in a topological space
T . We say that F converges to a point p ∈ T iff F is finer than Np. In this case,
p is called a limit of F .

Exercise: Show that a sequence a converges to a point p if and only if Fa converges
to A!
Exercise: Show that a filter on a Hausdorff topological space cannot have more
than one limit!
Exercise: Show that Np converges to p!

Definition 2.3 Let A be a subset of a tvs V . A filter F on A is called Cauchy iff
for every U ∈ N0 there is a f ∈ F with f − f ∈ U .

Exercise: Show that for a Cauchy sequence s, the filter Fs is Cauchy, too.

Theorem 2.4 Let V be a tvs. Let F be a Cauchy filter on V and G be a filter on
V finer than F . Then G is Cauchy, too.

Proof: trivial. 2

Theorem 2.5 Every convergent filter is Cauchy.

Proof. First we show that for any p, the filter Np is Cauchy. Thus if U is a
neighborhood of 0, then we can find V ∈ N0 with U ⊃ V −V ⊂ U = V +p−(V +p).
Then the statement follows from the preceding theorem. 2

Definition 2.6 A tvs is called complete if every vector-Cauchy filter on V con-
verges to a point in V . It is called sequentially complete if every vector-Cauchy
sequence on V converges to a point in V .

In the light of the first exercise we see that sequential completeness follows from
completeness. The inverse is wrong in general.

Theorem 2.7 In a Hausdorff tvs, every complete subset is closed.

Proof: Exercise. 2

Theorem 2.8 In a complete tvs, every closed subset is complete.
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Proof: Exercise. 2

Definition 2.9 Let A be a vector subspace of a tvs V . The sequential closure
A

s
of A in V consists of all points p ∈ V such that there is a sequence an ∈ A with

limn→∞ anp.

Theorem 2.10 Let A be a vector subspace of a tvs V . The topological closure A
coincides with the set of points p ∈ V such that there is a filter in A wih limit p.

Now, we adopt the definition of completion from the Treves book!

Definition 2.11 Let A be a tvs. The sequential completion A
s

of A is defined
as the sequential closure of A in A.

Theorem 2.12 The sequential completion on every tvs V is sequentially complete,
and V is sequentially densely embedded in V

s
.
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