2 Filters and Completeness

Definition 2.1 Let S be a set. A filter on S is a family F of subsets of S which is inclusion-stable, stable under finite intersections and nontrivial, i.e.

- If $f \in F$ and $f \subset g$, then $g \in F$,
- If $f, g \in F$, then $f \cap g \in F$,
- $\emptyset \neq F$.

If $F_1, F_2 \subset P(M)$ are two filters with $F_1 \subset F_2$, we say that F_2 is finer than F_1 .

The principal example of a filter is given by the family N_p of neighborhoods of a fixed point of a topological space. A further, not so important, example is the filter F_A of all subsets of S containing the fixed subset $A \neq \emptyset$. The last example is important to understand filters as generalizations of sequences: For every sequence s in a set S, we define the filter F_s as the family of all subsets of S containing the image of all but finitely many terms of s.

Definition 2.2 (Convergence of filters) Let F be a filter in a topological space T. We say that F converges to a point $p \in T$ iff F is finer than N_p . In this case, p is called a **limit** of F.

Exercise: Show that a sequence a converges to a point p if and only if F_a converges to A!

Exercise: Show that a filter on a Hausdorff topological space cannot have more than one limit!

Exercise: Show that N_p converges to p!

Definition 2.3 Let A be a subset of a tvs V. A filter F on A is called **Cauchy** iff for every $U \in N_0$ there is a $f \in F$ with $f - f \in U$.

Exercise: Show that for a Cauchy sequence s, the filter F_s is Cauchy, too.

Theorem 2.4 Let V be a tvs. Let F be a Cauchy filter on V and G be a filter on V finer than F. Then G is Cauchy, too.

Proof: trivial.

Theorem 2.5 Every convergent filter is Cauchy.

Proof. First we show that for any p, the filter N_p is Cauchy. Thus if U is a neighborhood of 0, then we can find $V \in N_0$ with $U \supset V - V \subset U = V + p - (V + p)$. Then the statement follows from the preceding theorem. \Box

Definition 2.6 A two is called **complete** if every vector-Cauchy filter on V converges to a point in V. It is called **sequentially complete** if every vector-Cauchy sequence on V converges to a point in V.

In the light of the first exercise we see that sequential completeness follows from completeness. The inverse is wrong in general.

Theorem 2.7 In a Hausdorff tvs, every complete subset is closed.

Proof: Exercise.

Theorem 2.8 In a complete tvs, every closed subset is complete.

Proof: Exercise.

Definition 2.9 Let A be a vector subspace of a tvs V. The sequential closure \overline{A}^s of A in V consists of all points $p \in V$ such that there is a sequence $a_n \in A$ with $\lim_{n\to\infty} a_n p$.

Theorem 2.10 Let A be a vector subspace of a tvs V. The topological closure \overline{A} coincides with the set of points $p \in V$ such that there is a filter in A with limit p.

Now, we adopt the definition of completion from the Treves book!

Definition 2.11 Let A be a tvs. The sequential completion \overline{A}^s of A is defined as the sequential closure of A in \overline{A} .

Theorem 2.12 The sequential completion on every tvs V is sequentially complete, and V is sequentially densely embedded in \overline{V}^s .